Active force generation in cross-linked filament bundles without motor proteins.

نویسندگان

  • Sam Walcott
  • Sean X Sun
چکیده

Cytoskeletal filaments often interact laterally through cross-linking proteins, contributing to passive cellular viscoelasticity and, perhaps surprisingly, active force generation. We present a theory, based on the formation and rupture of cross-linker bonds, that relates molecular properties of those interactions to the macroscale mechanics of filament bundles. Computing the force-velocity relation for such a bundle, we demonstrate significant contractile forces in the absence of molecular motors. This theory provides insight into cytokinesis, cytoskeletal mechanics, and stress-fiber contraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zipping mechanism for force-generation by growing filament bundles

We investigate the force generation by polymerizing bundles of filaments, which form because of short-range attractive filament interactions. We show that bundles can generate forces by a zipping mechanism, which is not limited by buckling and operates in the fully buckled state. The critical zipping force, i.e. the maximal force that a bundle can generate, is given by the adhesive energy gaine...

متن کامل

Force Generation by Molecular-Motor-Powered Microtubule Bundles; Implications for Neuronal Polarization and Growth

The heavily cross-linked microtubule (MT) bundles found in neuronal processes play a central role in the initiation, growth and maturation of axons and dendrites; however, a quantitative understanding of their mechanical function is still lacking. We here developed computer simulations to investigate the dynamics of force generation in 1D bundles of MTs that are cross-linked and powered by mole...

متن کامل

Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex

Actomyosin-based cortical flow is a fundamental engine for cellular morphogenesis. Cortical flows are generated by cross-linked networks of actin filaments and myosin motors, in which active stress produced by motor activity is opposed by passive resistance to network deformation. Continuous flow requires local remodeling through crosslink unbinding and and/or filament disassembly. But how loca...

متن کامل

Active stiffening of F-actin network dominated by structural transition of actin filaments into bundles

Molecular motor regulated active contractile force is key for cells sensing and responding to their mechanical environment, which leads to characteristic structures and functions of cells. The F-actin network demonstrates a two-order of magnitude increase in its modulus due to contractility; however, the mechanism for this active stiffening remains unclear. Two widely acknowledged hypotheses ar...

متن کامل

Direct measurement of force generation by actin filament polymerization using an optical trap.

Actin filament polymerization generates force for protrusion of the leading edge in motile cells. In protrusive structures, multiple actin filaments are arranged in cross-linked webs (as in lamellipodia or pseudopodia) or parallel bundles (as in filopodia). We have used an optical trap to directly measure the forces generated by elongation of a few parallel-growing actin filaments brought into ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010